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OPEN - High-quality chromosome-
pataDEscriPTOR level genome assembly of the
_snake Pseudoxenodon stejnegeri
(Squamata: Colubridae)

Lianming Du®?, Jiahao Chen'2, Qin Liu?, Songwen Tan?3 & Peng Guo?™

. The taxonomy and evolution of the genus Pseudoxenodon have long been poorly studied, and the

. paucity of genomic data in Pseudoxenodon critically impedes robust phylogenetic reconstruction

. and evolutionary analyses. Here, we present a chromosome-level reference genome assembly for P.

. stejnegeri generated through integrating the PacBio HiFi sequencing, Illumina short-read sequencing

. and Hi-C scaffolding techniques. The final genome size is 1601.26 Mb, with a scaffold N50 of 203.68 Mb
. and 97.07% assembled sequences anchored onto 18 pseudo-chromosomes. The BUSCO assessment

. revealed 97.8% completeness. We predicted 21,678 protein-coding genes, of which 17,531 (80.87%)

. genes were functionally annotated. Approximately 908.04 Mb repeat sequences were detected,

: representing 56.71% of the assembled sequences. This high-quality chromosome-level genome

. provides a valuable genomic resource for future studies on phylogenetics, evolution, and genetics of the
. genus Pseudoxenodon.

: Background & Summary

. The genus Pseudoxenodon, characterized by the obliquely arranged scales on the anterior part of the dorsal body,
. is a group of snakes that are widely distributed across southern and southeastern Asia'. This genus consists of
. seven species including P. stejnegeri, P. macrops, P. karlschmidlti, P. inornatus, P. jacobsonii, P. baramensis and
: P bambusicola®. Despite their ecological importance and unique morphological adaptations, they have been
. poorly studied, especially in a phylogenetic context. Due to lack of sufficient molecular data, the taxonomic
. classification of the genus Pseudoxenodon has remained controversial within the herpetological community.
. Recently, high-throughput sequencing techniques have been used to uncover snake genomic information and
. inform studies of snake evolution and development®, adaptation®®, venom®’ and phylogeny?®.

Previously, the inference of phylogenetic relationships of the genus Pseudoxenodon has been based mainly
: on mitochondrial genes®~!2. Many studies have demonstrated conflicting phylogenetic signals and evolution-
© ary histories between mitochondrial and nuclear genes'*~'. Moreover, increasing studies have even indicated
: that nuclear genes may provide more robust phylogenetic resolution for closely related lineages'”'®. In recent
. years, phylogenetic reconstruction based on whole genome has emerged as a powerful and reliable tool for
: deciphering biodiversity, ecology and evolution of organisms'®-?*. However, only one species of Pseudoxenodon
* has undergone genome sequencing and assembly using just short read sequencing technology®. These limited
: genetic resources severely hinder accurate determination of the evolutionary relationship of Pseudoxenodon and
© in-depth study on their evolutionary history.

: In this study, we present the first chromosome-level genome assembly of P. stejnegeri based on PacBio
- sequencing, Hi-C sequencing and Illumina sequencing technologies. We have assembled a high-quality genome
. with size of 1601.26 Mb and scaffold N50 length of 203.68 Mb. In total, about 97.07% bases have been anchored
© onto 18 chromosomes. This genome assembly not only provides genomic data for P. stejuegeri to study genetic
: diversity and population genetics but also offers a valuable resource for Pseudoxenodon studies on phylogenetics,
. adaptive evolution and comparative genomics.
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Fig. 1 The morphological characteristics and genome information of P. stejnegeri. (a) Live specimen of P
stejnegeri. (b) The K-mer (K=51) distribution for genome size estimation of P. stejnegeri genome. (c) The
quality and length distribution of PacBio sequencing results. (d) Hi-C interaction heatmap of P. stejnegeri
genome.

Materials & Methods

Ethics statement. All animal experimental procedures were in accordance with the Chinese Laboratory
Animal Welfare and Ethics law (GB/T35892-2018), and approved by the Biomedical Ethics Committee of
Chengdu University.

Sample collection and DNA extraction. An adult female individual of P. stejnegeri (Fig. 1a) was col-
lected from Ningbo City, Zhejiang Province, China in August 2023. Muscle tissue was used to extract genomic
DNA for whole-genome sequencing. Genomic DNA was extracted using QTAGEN Genomic Kits following the
manufacturer’s protocol. The quality and quantity of the total DNA were determined using a NanoDrop 2000
Spectrophotometer (Thermo Fischer Scientific) and Qubit Fluorometer (Invitrogen). The integrity of the DNA
was further evaluated using 1% agarose gel electrophoresis. Additionally, seven transcriptomic samples (muscle,
blood, heart, kidney, liver, lung and spleen) were collected from the same specimen for transcriptome sequencing.
Total RNA was isolated using Trizol reagent (Invitrogen) as instructed by the manufacturer.

Library preparation and sequencing. For long-read sequencing, genomic DNA was used to construct
PacBio SMRTbell library using the SMRTbell Express Template Prep Kit 3.0 with insert sizes of 15kb. The size
and concentration of library fragments were detected with an Agilent 2100 Bioanalyzer (Agilent technologies,
USA). The qualified libraries were evenly loaded on SMRT Cell and sequenced using Sequel II platform (Pacific
Biosciences, CA, USA) in CCS mode. For Illumina sequencing, a library with an insert size of 350 bp was con-
structed using the Truseq Nano DNA HT Sample Preparation Kit (Illumina, USA). The Hi-C library was pre-
pared using the Smartgenomics Hi-C kit (Smartgenomics Technology Institute, China). Initially, muscle tissue
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Items Contig Scaffold
Total length (bp) 1,600,567,841 | 1,600,572,231
GC Content (%) 40.20 40.20
Sequence number 660 617

N50 (bp) 94,324,657 203,681,815
N90 (bp) 11,419,988 22,461,667
Average length (bp) 2,425,103 2,594,120
Maximum length (bp) | 162,111,264 | 338,662,667
Minimum length (bp) | 11,757 11,757

Table 1. Genome assembly statistics for P, stejnegeri.

was fixed with 1% formaldehyde to cross-link DNA and proteins. The cross-linked DNA was then digested with
Hind III restriction enzyme and the resulting overhangs were in-filled with biotinylated nucleotides. The result-
ing blunt ends were then ligated, and Dynabeads M-280 Streptavidin (Life Technologies) was used to enrich
the library for fragments containing biotinylated ligation junctions. Both Illumina standard genomic and Hi-C
libraries were sequenced on an Illumina NovoSeq 6000 platform with 2 x 150 bp reads. RNA-seq libraries were
constructed using Hieff NGS Ultima Dual-mode RNA Library Prep Kit (Yeasen) and sequenced (2 x 150bp) on
the DNBSEQ-T?7 platform.

Genome survey. The whole-genome survey analysis was performed using short reads from Illumina
sequencing. The raw reads were first subjected to quality control using fastp v0.23.4?* with default parameters
which yielded 80.34 Gb clean data (Table S1). Based on these high-quality data, we used Jellyfish v2.3.1%° to ana-
lyze the k-mer frequency distribution with a K value of 51 according to a previous study®. The k-mer distribution
result was then imported to Genomescope v2.0 to predict genome size and heterozygosity. The genome size of P
stejnegeri was estimated to be approximately 1411.46 Mb, with a heterozygosity rate of around 0.61% (Fig. 1b).

Genome assembly.  First, the PacBio sequencing data was filtered to remove low-quality polymerase reads
using PacBio SMRT-Analysis software package. The reads with length < 50 bp, an average quality value < 0.8 and
the reads containing self-ligated SMRTbell adapters were discarded to obtain high-quality polymerase reads.
We employed ccs v4.2.0 in SMRTLink v9.0 with parameters --min-passes =3 and --min-rq=0.99 to process the
remaining subreads to generate HiFi reads, resulting in 6,044,853 reads (107.33 Gb) with a read N50 of 17.7 kb
(Fig. 1c, Table S2). Then, the HiFi long reads were assembled into contigs by using Hifiasm v0.19.9%° with default
parameters. The assembled contig-level genome comprises 660 contigs spanning 1,600,567,841 base pairs, with
an N50 value of 94.32 Mb (Table 1).

To generate a chromosome-level genome, the raw Hi-C sequencing data was filtered using fastp v0.23.4
with default parameters, retaining 133.77 Gb clean reads (Table S3). These high-quality reads were subsequently
mapped against the preliminary contigs by HiCUP v0.9.2*” along with Bowtie v2.5.4%. After Hi-C data align-
ment, we obtained about 219.40 million uniquely aligned valid reads, comprising 49.13% of the total reads
(Table S4). Based on the valid reads, we applied ALLHiC v0.9.14% to cluster, orientate, and order the contigs
for scaffold-level assembly. Finally, we adopted Juicebox v2.22%° to manually fine-tune the assembly, resulting
in a chromosome-level assembly. The assembled chromosome-level genome was 1.6 Gb, with 1.55Gb (97.07%)
anchored onto 18 pseudochromosomes and a scaffold N50 of 203.68 Mb (Figs. 1d, 2, 3, Table 1, S5). The assem-
bled chromosomes were assigned names from chrl to chr18 in descending order of length. We used subcom-
mand telo in seqtk v1.5 (https://github.com/lh3/seqtk) to detect telomeric repeats in pseudochromosomes, and
three pseudochromosomes achieved true telomere-to-telomere continuity (Table S6).

Gene structure annotation. To obtain a high-quality gene annotation, three methods were used to pre-
dict protein-coding gene structure, including homology-based prediction, transcriptome-based prediction and
ab initio prediction. For homology-based prediction, protein sequences of five species (including Pantherophis
guttatus, Thamnophis sirtalis, T. elegans, Ahaetulla prasina, Mus musculus) were downloaded from NCBI data-
base (Table S7). The protein sequences of each species were aligned to the assembled genome using genBlastA
v1.0.4*!. The candidate homologous regions were provided as inputs to GeneWise v2.4.1%? to precisely annotate
gene structures. For transcriptome-based prediction, the raw RNA sequencing datasets were filtered using fastp
v0.23.4, the retained clean reads were aligned to reference genome with Tophat v2.1.1%. The alignment results
were analyzed using Cufflinks v2.2.1%** to perform genome-guided transcript assembly. For ab initio prediction,
Augustus v3.5.0%, geneid v1.4.5° and GENSCAN v1.0¥ were applied to annotate genes. The gene models derived
from these different approaches were integrated using EVidenceModeler v2.1.0% to produce a non-redundant
and complete gene set which was further corrected using PASA v2.5.3% to supplement the untranslated regions
(UTRs) and alternative splicing information. Ultimately, we obtained a total of 21,579 protein-coding genes, with
an average gene length of 28,275.09 bp, an average CDS length of 1,406.54 bp, and an average exon number of 8.31
(Fig. 4a, Table 2).

Gene functional annotation. The predicted protein-coding genes were aligned against the NCBI
non-redundant (nr) database and Swiss-Prot*’ database using DIAMOND v2.1.11%.. Conserved domains, struc-
tural motifs and functional signatures were annotated using InterProScan v5.59* to search against InterPro
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Fig. 2 Snail plot for visualization of genome assembly and assessment metrics.

v91.0% database. We also employed eggNOG-mapper v2.1.8* together with eggNOG v5.0.2% database to predict
gene functions through evolutionary homology analysis. Both InterProScan and eggNOG-mapper automatically
performed gene ontology (GO*®) assignment. In addition, we used pyfastx v2.2.0* to split protein sequence file
into three smaller files which were then submitted to BlastKOALA v3.1 server for KEGG* pathway identifica-
tion. Overall, 17,531 (80.87%) predicted protein-coding genes were functionally annotated by at least one func-
tional database (Fig. 4b, Table 3).

Repeat annotation. Repetitive elements in the P. stejnegeri genome were detected using a hybrid
method that combined homology-based and de novo search strategies. We applied RepeatMasker v4.1.7 and
RepeatProteinMask to carry out homology-based prediction with Repbase v23.08>° database and Dfam v3.8°!
database. For de novo prediction, LTR_Finder v1.0.7%2, Piler v1.0%, RepeatScout v1.0.7>* and RepeatModeler
v2.0.6%° were used to build a library of repetitive sequences. Consequently, RepeatMasker was utilized to pre-
dict transposable elements based on the library. Additionally, we identified tandem repeats from the P. stejnegeri
genome using Krait v2.0.6% with pytrfv1.4.1%7 as search engine, maximum motif size of 100 bp, and minimum
length of 10 bp. In total, we identified 9,976,736 repeat elements with total length of 908.04 Mb accounting for
56.71% of the assembled genome (Table 4).
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Fig. 3 Circos plot for showing distribution of genomic features. The tracks from outermost to innermost

are pseudo-chromosomes, tandem repeat density (maximum count: 11689), DNA transposon density
(maximum count: 176), LINE density (maximum count: 1679), SINE density (maximum count: 53), LTR
density (maximum count: 363), non-coding RNA density (maximum count: 235), protein-coding gene density
(maximum count: 125), GC content and synteny among chromosomes.

Non-coding RNA identification. We initially employed Infernal v1.1.5% to align the assembled genome
against Rfam v15.0% database for detecting non-coding RNAs (rRNAs, tRNAs, snRNAs, and miRNAs). Then,
tRNAscan-SE v2.0.12%° with default parameters was used to explore tRNAs. Barrnap v0.9 (https://github.com/
tseemann/barrnap) was used to predict ribosomal RNAs with the --kingdom parameter set to euk. Finally, we
identified 3440 non-coding RNAs including 273 miRNAs, 1083 rRNAs, 1549 tRNAs and 342 snRNAs (Table 5).

Data Records

The raw PacBio, Hi-C, Illumina and RNA-seq data were submitted to the Sequence Read Archive at NCBI under
accession number SRP647818%!. We have also deposited the raw sequencing data in the Genome Sequence
Archive (GSA®) in National Genomics Data Center (NGDC®?) with accession number CRA025134% under
BioProject PRJCA039323. The final genome and annotation data has been made available on the Figshare
repository®. The final genome assembly has also been deposited at DDBJ/ENA/GenBank under the accession
JBNIJY0000000006S,
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Fig. 4 Venn diagrams for protein-coding gene annotation. (a) Genes annotated by different strategies. (b) Gene
functions annotated by different databases.

Gene Average gene | Average CDS | Average exon | Averageexon | Averageintron

Method Gene set number | length (bp) length (bp) | per gene length (bp) length (bp)

A. prasina 15,966 27,366.43 1,679.54 9.55 175.87 3,004.28

M. musculus | 14,139 24,825.48 1,556.61 8.62 180.5 3,052.13
Homology-based P. guttatus 16,306 | 27,376.13 1,686.29 9.58 176.01 2,993.89

T. elegans 15,750 26,888.65 1,656.93 9.45 175.33 2,985.88

T. sirtalis 16,561 22,225.65 1,420.5 7.84 181.11 3,040.14

Augustus 23,117 18,426.15 1,279.48 6.6 193.86 3,073.5
AD initio Geneid 27,367 30,620.13 1,228.61 6.4 191.97 5,405.02

Genscan 30,647 37,876.58 1,342.16 7.6 176.6 5,574.41
Transcripotome-based | Cufflinks 94,903 25,210.35 4,139.14 7.43 557.29 3,278.41
Integration EVM 26,959 20,161.41 1,229.76 6.9 178.3 3,210.27
Final set PASA 21,579 28,275.09 1,406.54 8.31 272.46 3,556.22

Table 2. Statistics of the predicted protein-coding genes by different approaches.

Tools Datab Annotated Numb Annotated Percent (%)
DIAMOND NR 17,466 80.94
Swiss-Prot 16,228 75.20
InterPro 16,448 76.22
InterProScan GO 12,434 57.62
Reactome 9,222 42.74
eggNOG 17,107 79.28
COG 16,952 78.56
eggNOG-mapper | GO 14,303 66.28
KEGG 12,629 58.52
PFAM 16,349 75.76
BlastKOALA KEGG 12,760 59.13
Total annotated 17,531 81.24

Table 3. Summary of the functionally annotated protein-coding genes.
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Repeat class Counts Total length (bp) | Percentage (%)
SINE 29,488 8,029,891 0.5

LINE 1,870,162 | 449,104,837 28.05

LTR 430,800 190,937,369 11.92

DNA 126,991 69,058,995 4.31

Tandem repeat | 7,080,545 | 111,009,169 6.93

Unknown 438,750 79,896,535 4.99

Total 9,976,736 | 908,036,796 56.71

Table 4. Summary of the repetitive elements in the P, stejnegeri genome.

Non-coding RNA type | Total Number | Totallength (bp)
miRNA 273 22,535

rRNA 1083 1,835,703
snRNA 342 40,764

snoRNA 193 22,637

tRNA 1549 113,822

Total 3440 2,035,461

Table 5. Statistics of the annotated non-coding RNAs.

chrt
Thamnophis elegans

Fig. 5 Gene synteny analysis of genome chromosomes between P, stejnegeri and two other snakes (A. prasina
and T. elegans).

Technical Validation

We have used multiple methods to assess the quality of the genome assembly. First, the completeness of the genome
assembly was evaluated using benchmarking universal single-copy orthologs (BUSCO) v5.6.05 based on verte-
brata_odb10 lineage dataset and core eukaryotic genes mapping approach (CEGMA) v 2.5%. The BUSCO result
revealed 97.8% completeness (Fig. 2, Table S8), and 231 (93.15%) out of 248 core eukaryotic genes from CEGMA
were identified in the assembled genome (Table S9). Then, we mapped Illumina filtered reads to the assembled
genome using BWA v0.7.18% for accurate assessment. The mapping result indicated that 99.71% paired-end reads
could be aligned to the assembled genome (Table S10). We further assessed the quality value (QV) and k-mer com-
pleteness using Merqury v1.37° with 21-mers generated from Illumina short reads. The QV score and k-mer com-
pleteness were estimated as 47.1 and 89.91%, separately. We also performed chromosomal synteny analysis between
P stejnegeri and other two snakes (Ahaetulla prasina, T. elegans) with well assembled genomes using MCScanX
v1.0.0”". We observed a high degree of synteny among these species (Fig. 5). In conclusion, all these results illus-
trated that the assembled genome was a high-quality chromosome-level reference genome for P. stejnegeri.

Data availability

The assembled genome of P. stejnegeri can be downloaded from the NCBI GenBank at https://identifiers.org/
ncbi/insdc:JBNIJY000000000. The raw sequencing data, including Illumina, PacBio, Hi-C and transcriptome
sequencing, can be publicly available from the NGDC GSA database at https://bigd.big.ac.cn/gsa/browse/
CRAO025134 and NCBI SRA database at https://identifiers.org/ncbi/insdc.sra:SRP647818. The genome
assembly, gene annotation and functional annotation can be obtained from Figshare at https://doi.org/10.6084/
m9.figshare.28953233.
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Code availability

No customized scripts were utilized in this study. All tools and pipelines were executed according to the manual
and protocols of the published bioinformatic tools. The specific versions and parameters of software have been
described in the Methods.
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