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Abstract 

Background  Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost 
all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play 
pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although 
much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack 
of a powerful tool for large-scale microsatellite analysis.

Results  We present Krait2, a user-friendly graphical tool for investigating perfect, imperfect and compound micros-
atellites from FASTA and FASTQ formatted genomic datasets. Krait2 not only provides features such as primer design, 
repeat filtering, repeat annotation and statistical analysis, but also offers various output formats to support custom-
ized downstream analysis. Moreover, it has capability of analyzing multiple genomes simultaneously and conducting 
comparative analysis.

Conclusions  Krait2 is a versatile and easy-to-use software for both novices and experts to identify and analyze micro-
satellites. The installer and source code are available at https://​github.​com/​lmdu/​krait2.
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Background
Microsatellites, also termed as simple sequence repeats 
(SSRs) or short tandem repeats (STRs), consist of con-
tinuously repeated short DNA sequences with length 
varying from one to six base pairs [1]. Microsatellites 
are ubiquitous occurrence in nearly all genomes and 

highly abundant in eukaryote genomes, covering around 
3% of the human genome [2]. During DNA replication, 
microsatellites are prone to slippage with the addition 
or deletion of repeat units leading to widespread length 
polymorphisms also known as microsatellite insta-
bility [3]. Microsatellites represent a large source of 
genetic variation and a powerful molecular tool to esti-
mate genetic diversity and differentiation among popu-
lations, particularly in conservation genetics [4, 5]. In 
addition to genotypes, microsatellites can also affect 
phenotypes by altering the gene expression, alternative 
splicing, transcription factor binding and methylation 
[6–8]. Moreover, their instability or expansion are sig-
nificantly implicated in various human genetic diseases, 
even in several cancers [9, 10].

In recent years, the rapid development of next-gen-
eration sequencing (NGS) technology makes single 
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nucleotide polymorphisms (SNPs) to be attractive genetic 
makers. Although several studies have demonstrated 
that SNPs outperform microsatellites in genetic analysis 
owing to their higher abundance, better accuracy and 
well-understood mutational mechanism [11–13], SNPs 
cannot completely replace microsatellites in genetic 
diversity assessment [14]. Compared to typically biallelic 
SNPs, microsatellites possess a higher mutation rate and 
are mostly multiallelic per locus making them more sen-
sitive in detecting genetic variations within populations 
[15, 16]. Because of their greater per-locus information 
content, microsatellites have been proved to be prefera-
ble markers for parentage and assignment studies as well 
as forensic identification, regardless of sample size [17, 
18]. In addition, recent studies tend to combine microsat-
ellites with SNPs to leverage the strengths of both marker 
types, enhancing the resolution and accuracy of genetic 
analyses [19, 20]. Moreover, SNP data analysis often 
requires more sophisticated bioinformatics tools and 
computational resources, whereas microsatellite data-
sets are relatively small, making them easier to process 
using well-established software solutions [21]. Therefore, 
microsatellites remain an economical, informative and 
easy-to-use technology for population and conservation 
genetics.

Over the past two decades, much effort has been 
devoted to developing microsatellite identification tools 
and designing tandem repeat search algorithms [22, 23]. 
There are several tools with graphical user interfaces that 
have attracted a wide range of users across various fields 
due to their ease of use, flexibility and powerful func-
tionality, such as web-based tools including SSRIT [24], 
MISA-web [25], EasySSR [26], MegaSSR [27] and desktop 
applications involving SciRoKo [28], msatcommander 
[29], GMATA [30], MSDB [31], Krait [32]. However, 
these tools are only suitable for detecting microsatellites 
from small amounts of sequence data or small genomes. 
The boom of NGS has uncovered vast complex genomes 
and generates unprecedented amounts of sequencing 
data which brings a big challenge to microsatellite iden-
tification. To meet the urgent demand, we developed 
Krait2, an updated version of the Krait. Krait2 is a ver-
satile tool for exploiting microsatellites from large-scale 
genome sequences. Krait2 also provides an intuitive 
graphical user interface for facilitating microsatellite 
identification, visualization, annotation, primer design 
and comparative analysis.

Implementation
Krait2 is written in Python programming language 
and its intuitive graphical interface is developed using 
PySide6 (https://​doc.​qt.​io/​qtfor​python-6). It is designed 
to run as standalone desktop application on Windows, 

MacOS and Linux operating systems. The functionality 
and workflow of Krait2 are shown in Fig.  1. The appli-
cation utilizes pyfastx [33] to parse and index FASTA 
and FASTQ sequence files. The indexed sequence files 
allow fast random access to subsequence without load-
ing entire sequence, for example retrieval of microsatel-
lite flanking sequences. We employ pytrf (https://​github.​
com/​lmdu/​pytrf ) to identify perfect, imperfect and com-
pound microsatellites as well as generic tandem repeats. 
The pytrf is a Python library built on the Krait algorithm, 
which has improved the accuracy of searching for exact 
and approximate tandem repeats. We have integrated 
primer3 [34] into the software along with primer3-py 
(https://​github.​com/​libna​no/​prime​r3-​py) for designing 
primers. The pygros, a Python binding to cgranges [35], is 
applied to find coordinate overlaps between microsatel-
lites and gene features to annotate microsatellites. Finally, 
the front-end frameworks including tabler (https://​tabler.​
io), datatables (https://​datat​ables.​net/) and echarts [36] 
are adopted to generate HTML statistics analysis report. 
All the input and output datasets are saved into different 
tables in an SQLite database file which can be shared by 
any other machines and systems.

Results
Comparison with other tools
We have performed comprehensive comparison between 
Krait2 and several other similar graphic tools in certain 
aspects of features. The comparison results are depicted 
in Fig. 2. Although web-based tools are simple and easy 
to use with well cross-platform compatibility, they are 
generally restricted by the requirement of stable inter-
net environment and server-side shared computational 
resources, resulting in limited processing power for large 
datasets. In contrast, desktop applications like Krait and 
Krait2 can leverage local hardware resources to effec-
tively deal with large-scale genome datasets. As shown in 
Fig. 2, Krait and Krait2 have more specific functionalities 
than other tools. Both of them can accept gzipped FASTA 
formatted sequence files as input, which significantly 
reduces disk usage, especially for ultra-large genomes. 
They not only are able to identify perfect, imperfect and 
compound microsatellites but also are extended to find 
generic tandem repeats with any motif size. In addition 
to statistical function found in most tools, they provide 
advanced features that are rarely supported by other 
tools, such as filtering microsatellites according to motif, 
position, repeat number, length, etc., designing primer 
sequences, locating to gene regions and viewing micros-
atellite sequences.

Compared with the previous version, Krait2 has added 
some new features and improved performance in many 
aspects. It enables users to directly find microsatellites 

https://doc.qt.io/qtforpython-6
https://github.com/lmdu/pytrf
https://github.com/lmdu/pytrf
https://github.com/libnano/primer3-py
https://tabler.io
https://tabler.io
https://datatables.net/


Page 3 of 7Du et al. BMC Genomics           (2025) 26:72 	

Fig. 1  The workflow of the Krait2 and the structure of the data backend

Fig. 2  Comparison of features between Krait2 and other tools. The red dots indicate feature support
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from FASTQ or gzipped FASTQ files. Krait2 has the 
capability to detect microsatellites from plenty of 
genomes at once and conduct comparative analysis. 
Krait2 offers comparison of microsatellite distribu-
tion patterns, including microsatellite frequency and 
density, motif abundance and distribution in different 
gene regions (See Additional File 1). Except for show-
ing microsatellites with flanking sequence, the sequence 
viewer has been extended to display the highlighted 
imperfect microsatellites and primer sequence locations. 
After annotation, the Krait2 also allows users to exam-
ine which genes and gene features the microsatellites are 
located in. Moreover, the Krait2 has greatly improved the 
performance of annotation and the accuracy for finding 
imperfect microsatellites.

Software overview and usage
The main window of Krait2 is composed of a toolbar, 
one fixed area for data view and three removable panels 
which can be floated as an independent window (Fig. 3). 

All the imported sequence files will be separately listed 
in file panel (Fig.  3A). When the annotation file with 
the same name as the sequence file is imported, the 
corresponding sequence file name will be displayed 
in bold in the file panel. Then, you can click the tool-
bar buttons to perform various microsatellite analysis 
(Fig.  3B). After microsatellite analysis, Krait2 allows 
users to obtain detailed information of sequence files, 
identified microsatellites, designed primers and statisti-
cal results in data view panel by clicking sequence file 
name (Fig.  3C). If a microsatellite is located to a gene 
region, you can click on it to view the specific feature 
of that gene in the annotation panel (Fig.  3D). Simul-
taneously, the repeat sequence and flanking sequence 
of the clicked microsatellite will be shown in sequence 
panel (Fig. 3E). If the clicked microsatellite is imperfect, 
you can go to the alignment tab to examine the pattern 
alignment result between it and its perfect counterpart 
(Fig. 3F).

Fig. 3  The overview of the Krait2 main window. A Input file list. B Tools for performing analysis. C Tables for showing results. D Repeat annotation 
information. E Repeat sequence visualization. F Alignment patterns between imperfect microsatellite and its perfect counterpart
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Input and Output
Krait2 can read DNA sequences from FASTA and 
FASTQ formatted files. In order to save disk space, 
Krait2 is also capable of parsing sequences directly 
from gzipped FASTA and FASTQ files. For FASTQ 
file, the long-read sequencing dataset is recommended 
to analyze microsatellites due to its unparalleled accu-
racy in identifying tandem repeats [37]. Krait2 can 
extract gene features from GFF and GTF formatted 
files to annotate microsatellites. The microsatellite 
search results can be exported into CSV, TSV and GFF 
formatted table files. The repeat sequence and flank-
ing sequence of microsatellites can be exported as 
FASTA formatted files. Moreover, Krait2 has the abil-
ity to generate HTML formatted statistical report files 
which offer interactive charts and data tables. Finally, 
all results can be saved to a project file with.kpf exten-
sion, allowing them to be easily reused by Krait2.

Case Study
We have screened 141 annotated avian genomes across 
36 orders and 69 families from NCBI RefSeq database. 
The corresponding genome FASTA files and GTF anno-
tation files have been downloaded using NCBI Data-
sets [38]. We have identified microsatellites from these 
genomes using Krait2 with default parameters and per-
formed distribution comparative analysis. The size of 
these genomes ranges from 0.93 Gb to 1.54 Gb and the 
GC content varies from 40.76% to 46.81% (See Additional 
File 2). In total, we identified 38,208,452 perfect micro-
satellites covering about 0.49% ~ 5.05% of the genome 
sequence. The relative abundance or frequency ranged 
from 102.53 to 648.08 loci/Mb and the relative density 
ranged between 1891.42 and 50,457.82 bp/Mb (See Addi-
tional File 3). We observed that both relative abundance 
and relative density have no significant correlation with 
genome size (See Additional File 4), which is consistent 
with previous study in birds [39]. We have calculated the 
z-score of density and frequency which showed no obvi-
ous taxon-specific variation (Fig.  4A). Mono-nucleotide 

Fig. 4  SSR distribution analysis of avian genomes across multiple orders. A Z-score of SSR density and frequency. B SSR counts distribution 
of different types. C SSR counts distribution in different gene regions
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microsatellites are the most abundant in almost all avian 
genomes, except for Patagioenas fasciata and Falco per-
egrinus which are dominated by tetra-nucleotides and 
hexa-nucleotides, respectively (Fig.  4B). More than 90% 
of microsatellites are located in non-coding regions, most 
of which are located in intergenic regions, followed by 
introns (Fig. 4C). These findings are in line with previous 
studies in eukaryotic genomes [40], especially in avian 
genomes [41].

Conclusions
In this study, we introduce Krait2, a user-friendly graphi-
cal tool for investigating microsatellites from genomic 
datasets. Krait2 enables researchers to search for per-
fect, imperfect and compound microsatellites with cus-
tom parameters from both FASTA and FASTQ files as 
well as gzipped genomic data. To our knowledge, Krait2 
is the most versatile microsatellite processing tool with 
functions including primer design, sequence visualiza-
tion, repeat filter, annotation and comparative analysis. 
In addition, all data in Krait2 can be saved to a project file 
for repurposing and exported to various output format 
files for downstream analysis. In summary, these features 
make Krait2 easy to use for both novices and experts 
to detect microsatellites and perform comprehensive 
analysis.

Availability and requirements
Project name: Krait2.

Project home page: https://​github.​com/​lmdu/​krait2
Operating system(s): Windows, Linux, MacOS.
Programming language: Python.
Other requirements: none.
License: MIT.
Any restrictions to use by non-academics: No.
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CSV	� Comma-separated values
HTML	� Hypertext markup language
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