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Background
Tandem repeats (TRs) are genomic sequences in which a pattern of nucleotides is tan-
demly repeated multiple times in succession. They are ubiquitously dispersed in nearly 
all genomes of eukaryotic and prokaryotic organisms [1], even prevalent in organel-
lar DNA [2]. The tandem repeats are broadly divided into microsatellites (also known 
as short tandem repeats or simple sequence repeats), minisatellites and satellite DNA 
according to the motif size [3]. There is no consensus among researchers regarding the 
minimum repeats and motif size to constitute a microsatellite or minisatellite. Many 
studies generally use 1–6 bp as motif size to identify microsatellites from genomic 
sequences [4–6]. Repeats with motif size ranging from 7 to 100 bp and over 100 bp are 
usually considered as minisatellites and satellite DNA, respectively [7]. Due to the vari-
ability in the number of repeats between individuals in a population, microsatellites and 
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minisatellites are sometimes referred to collectively as variable number tandem repeats 
(VNTRs) [8].

TRs are one of the largest sources of genetic variation and polymorphism which play 
diverse roles in genome structure, function, and evolution as well as influence various 
human phenotypes [9, 10]. They can tune gene expression at both transcriptional and 
translational levels [11] and have recently been proved to regulate gene splicing [9]. For 
example, STRs can bind to transcription factor DNA-binding domains to modulate their 
affinities and apparent on-rates leading to gene expression alterations [12]. In addition to 
length variation, the motif composition variation of TRs can also affect the gene expres-
sion [13]. TR expansions are associated with many nervous system diseases [14] and are 
implicated in complex disorders such as autism spectrum disorders [15, 16] and cancers 
[17]. Due to their high polymorphism rates, TRs have been widely used as useful genetic 
markers in population genetics, genetic mapping, forensics and phylogenetics [18, 19].

With the rapid evolution of next-generation sequencing technologies, the genome 
sequences of numerous species have been uncovered. The vast growth of genomic data 
enables us to decode not only coding genes but also other functional non-coding ele-
ments. In the past, many algorithms and tools have been developed to find TRs on a 
genome-wide scale [3, 20]. In recent years, Python has emerged as the most commonly 
used language for deciphering genomic data due to its simple syntax and widespread 
adoption [21, 22]. However, there is a lack of an efficient tandem repeat identification 
tool that can leverage the Python ecosystem for seamless integration into larger pro-
grams. Here, we present a novel Python package named pytrf for fast finding tandem 
repeats from genomic sequences. Pytrf has been designed to search for both exact and 
approximate tandem repeats. It has the capability to find generic tandem repeats with-
out motif length limitation. Although the pytrf is written in C language, it is compiled 
as Python package for allowing seamless embedding into other programs or using in 
Jupyter notebooks. Moreover, pytrf also provides command line tools for researchers to 
facilitate detection of tandem repeat sequences from genomes.

Implementation
Algorithms

Pytrf adopts a fast search algorithm described in our previous study [23] to find exact 
tandem repeat sequences. We have optimized the algorithm and developed it as a 
Python package using C language. There are two steps involved in finding approximate 
tandem repeats. First, the pytrf finds an exact tandem repeat sequence with custom 
minimum repeats and length as a seed using sliding window approach (Fig. 1A). Then, 
the seed will be extended to both left and right through aligning flanking sequences 
to motif sequence (Fig.  1B, C). The alignment similarity is measured by using edit 
distance which allows substitutions and indels. We employ the wraparound dynamic 
programming algorithm (DPA) [24] instead of the previously used classic DPA to cal-
culate alignment edit distance. Let S be the extending sequence with maximum length 
of n, M denotes the motif sequence with length of m, D represent a two-dimensional 
matrix used to hold the edit distance values, D[i, j] means the edit distance value in 
row i and column j, where 0 ≤ i ≤ n and 0 ≤ j ≤ m. Initially, D[i, 0] = i and D[0, j] = j. The 
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remaining cells are filled row by row in two phases. In the first phase, where 1 ≤ i ≤ n 
and 1 ≤ j ≤ m, the edit distance values are computed using following formula:

In the second phase, where 1 ≤ i ≤ n and 1 ≤ j < m, the edit distance values are 
updated using following formula:

After filling the current row i, the minimum value of row i will be found and com-
pared with the minimum value of the previous row i−1. If the minimum value of the 
current row is greater than that of the previous row, it means that an edit operation 
has occurred, which is counted as an alignment error. When the number of succes-
sive edit operations exceeds the user specified value (default: 3), the extension will be 
terminated immediately, and the row number i will return to the last row without edit 
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Fig. 1  The overview of pytrf algorithm. A the found seed repeat sequence and motif sequence before 
extending to both left and right. B extending repeat sequence to left by aligning sequence to the reversed 
motif sequence using wraparound dynamic programming to calculate edit distance. C extending repeat 
sequence to right
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operations. Finally, an optimal alignment path is generated by backtracking the edit 
distance matrix from the rightmost minimum value of row i. Meanwhile, the num-
ber of matches, substitutions, deletions, and insertions are calculated separately. The 
extending alignment identity can be estimated using the following equation:

Performance assessment

We have evaluated the performance of pytrf for finding microsatellites and minisatel-
lites by monitoring the running time and peak memory usage. The pytrf command line 
tools applied pyfastx [25] to parse FASTA and FASTQ sequences. We have compared 
the pytrf with other ten tools including MISA [26], SciRoKoCo [27], PERF [28], RPTRF 
[29], GMATA [30], Phobos, MREPS [31], Kmer-SSR [32], SSRIT [33], Tantan [34], TRF 
[35], ULTRA [36] (See Table  S1, Additional file  1). The genome sequences of human, 
dog, chicken, zebrafish and fruit fly were downloaded from UCSC genome database with 
total bases varying from 0.14 GB to 3.12 GB (See Table S2, Additional file 1). The run-
ning time and peak memory usage for each tool were measured by using linux built-in 
‘time’ command located in/usr/bin folder with −f ‘%e %M’ option on Ubuntu 20.04 with 
32 GB memory. The detailed running commands and parameter settings can be found 
in Additional file 1. We used custom Python script to convert the results of each tool to 
bed formatted file. Intervene [37] was employed to analyze intersection between these 
bed files.

Results
Package overview

The Pytrf contains three modules including STRfinder, GTRFinder and ATRFinder 
which need DNA sequence and sequence name as required input parameters (Fig. 2). 
STRFinder is specially designed for efficient identification of microsatellites. GTRFinder 
allows users to find exact tandem repeats without limitation of motif size. We can obtain 
exact tandem repeat (ETR) object by iterating over STRFinder and GTRFinder. The ETR 
object represents a tandem repeat found in sequence and provides many properties to 
assist feature extraction. While ATRFinder can produce approximate tandem repeat 
(ATR) object without motif size limitation. In addition to the same attributes as ETR, 
ATR also enables to obtain seed information and alignment information. The pytrf also 
provides corresponding command line tool for each module to help users to find tandem 
repeats from FASTA or FASTQ files.

Performance comparison

We have performed comparative analysis between pytrf and several other tools for find-
ing microsatellites, minisatellites and approximate tandem repeats. Among the com-
pared tools, MREPS failed to process some genomes which have non-ATGC base codes 
and many unknown bases in a window, and RPTRF also failed to process large genomes 
due to insufficient memory. For microsatellite detection, all the tested tools exhibit 
comparable performance in processing smaller genomes, whereas the performance 

Identity =
matches

matches + substitutions + deletions + insertions
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differences grow dramatically with the increase of genome size (Fig.  3A). The pytrf 
shows the highest performance in the aspect of elapsed time and its peak memory usage 
is comparable to SciRoKoCo and Phobos. The intersection analysis of search results 
indicates that the pytrf finds most tandem repeats identified by other tools and even dis-
covers more tandem repeats than GMATA, MISA and SciRoKoCo (Fig. 3B). Similarly, 
the pytrf consumes the least time to search for minisatellites with motif length of 7–100 
bp (Fig. 4A). The search results of pytrf covered almost all minisatellites that identified 
by other tools (Fig.  4B). For ATRs identification, the pytrf demonstrates comparable 

Fig. 2  The class structures of pytrf and their properties and methods

Fig. 3  The performance comparison for finding perfect microsatellites. A comparison of elapsed time and 
peak memory usage. B upset plot for intersections of search results
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performance in both aspects of elapsed time and memory usage to Tantan and is much 
faster than TRF and ULTRA (Fig.  5A). Additionally, the pytrf finds the least specific 
ATRs and most of its detected ATRs can be covered by other tools (Fig. 5B). Although 
pytrf is very fast for finding ATRs, it can’t find ATR without an exact seed that has at 
least two copies of a motif and is thus more suitable for finding tandem repeats with 
shorter motif length.

Conclusions
Pytrf is an artful lightweight tool that yields the best performance for finding both exact 
and approximate tandem repeats from DNA sequences. It provides simple interfaces 
for assisting integration with external larger programs to identify tandem repeats. Fur-
thermore, it also offers efficient command line tools for facilitating detection of tandem 
repeats from genomes.

Availability and requirements

Project name: pytrf
Project home page: https://​github.​com/​lmdu/​pytrf
Operating system(s): Platform independent

Fig. 4  The performance comparison for finding perfect minisatellites with motif size of 7–100 bp. A 
comparison of elapsed time and peak memory usage. B venn plot for showing number of intersections 
between different tools

Fig. 5  The performance comparison for finding approximate tandem repeats with motif size of 1–100 bp. 
A comparison of elapsed time and peak memory usage. B venn plot for showing number of intersections 
between different tools

https://github.com/lmdu/pytrf
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Programming language: Python, C
Other requirements: pyfastx
License: MIT.
Any restrictions to use by non-academics: None.
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