
1

Briefings in Bioinformatics, 00(00), 2020, 1–8

doi: 10.1093/bib/bbaa368
Problem Solving Protocol

Pyfastx: a robust Python package for fast
random access to sequences from plain
and gzipped FASTA/Q files
Lianming Du, Qin Liu, Zhenxin Fan, Jie Tang, Xiuyue Zhang, Megan Price,
Bisong Yue and Kelei Zhao
Corresponding authors: Kelei Zhao, Institute for Advanced Study, Chengdu University, Chengdu 610106, China. Tel: +86-28-84216035;
Fax: +86-28-84333218; Email: zhaokelei@cdu.edu.cn. Bisong Yue, Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, China. Tel: +86-28-85416928; Fax: +86-28-85416928; Email: bsyue@scu.edu.cn

Abstract

FASTA and FASTQ are the most widely used biological data formats that have become the de facto standard to exchange
sequence data between bioinformatics tools. With the avalanche of next-generation sequencing data, the amount of
sequence data being deposited and accessed in FASTA/Q formats is increasing dramatically. However, the existing tools have
very low efficiency at random retrieval of subsequences due to the requirement of loading the entire index into memory. In
addition, most existing tools have no capability to build index for large FASTA/Q files because of the limited memory.
Furthermore, the tools do not provide support to randomly accessing sequences from FASTA/Q files compressed by gzip,
which is extensively adopted by most public databases to compress data for saving storage. In this study, we developed
pyfastx as a versatile Python package with commonly used command-line tools to overcome the above limitations.
Compared to other tools, pyfastx yielded the highest performance in terms of building index and random access to
sequences, particularly when dealing with large FASTA/Q files with hundreds of millions of sequences. A key advantage of
pyfastx over other tools is that it offers an efficient way to randomly extract subsequences directly from gzip compressed
FASTA/Q files without needing to uncompress beforehand. Pyfastx can easily be installed from PyPI (https://pypi.org/project/
pyfastx) and the source code is freely available at https://github.com/lmdu/pyfastx.

Key words: FASTA; FASTQ; random access; sequence retrieval; sequence parser

Lianming Du, PhD, is an assistant professor at the Institute for Advanced Study, Chengdu University, Chengdu, China. His research interest is focused on
bioinformatics and integrated genomics.
Qin Liu, PhD, is a lecturer at the College of Life Sciences and Food Engineering, Yibin University, Yibin, China.
Zhenxin Fan, PhD, is an associate professor at the Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science,
Sichuan University, Chengdu, China.
Jie Tang, PhD, is an associate professor at the Institute for Advanced Study, Chengdu University, Chengdu, China.
Xiuyue Zhang, PhD, is an associate professor at the Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science,
Sichuan University, Chengdu, China.
Megan Price, PhD, is a lecturer at the Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan
University, Chengdu, China.
Bisong Yue, PhD, is a professor at the Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan
University, Chengdu, China.
Kelei Zhao, PhD, is a professor at the Institute for Advanced Study, Chengdu University, Chengdu, China.
Submitted: 1 March 2020; Received (in revised form): 30 October 2020

© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://academic.oup.com/
https://pypi.org/project/pyfastx
https://pypi.org/project/pyfastx
https://github.com/lmdu/pyfastx


2 Du et al.

Introduction
Although a variety of data types have been developed with
innovations of omics sequencing technologies, dealing with
sequence data represented in structured formats remains the
core issue in bioinformatics analysis [1]. Among biological data
formats, FASTA is the most common file format for nucleotide
and protein sequences, while FASTQ is the most ubiquitous
file format for sequencing read data [2]. The FASTA format was
originally invented as the input format for the FASTA sequence
alignment tool [3]. As a simple extension to the FASTA format,
FASTQ can store both nucleotide sequence and its corresponding
quality scores [4]. Although FASTA/Q formats similarly suffer
from the absence of explicit definitions, they have evolved
into the de facto standard to exchange sequence data between
bioinformatics tools.

Due to the rapid proliferation of high-throughput sequencing
technologies, the amount of sequence data being deposited into
public databases and accessed in FASTA/Q formats is increasing
dramatically. Thus, development of powerful and efficient tools
for parsing FASTA/Q format files can greatly facilitate transform-
ing sequence data into biological knowledge. Currently, many
tools have been developed to manipulate FASTA/Q formatted
files and can be divided into two main categories. The first
category comprises tools that can only parse sequences in order
such as HTSeq [5], seqmagick (https://github.com/fhcrc/seqma
gick), fasta_utilities (https://github.com/jimhester/fasta_utilitie
s), seqtk (https://github.com/lh3/seqtk), FASTX-Toolkit (http://
hannonlab.cshl.edu/fastx_toolkit), and fqtools [6]. The second
category encompasses tools that have the capability to randomly
access sequences such as Biopython [7], BioPerl [8], samtools

[9], pysam [9], seqkit [10], pyfasta (https://github.com/brentp/
pyfasta) and pyfaidx [11]. The tools in the second category are
generally time and memory-efficient when extracting speci-
fied subsequences and randomly sampling sequences without
scanning the entire sequence file from start to end.

Samtools is the first tool support for random access to
sequences by establishing an index file that contains the name,
the number of bases, byte offset and line length of each sequence
[9]. Once an index file is generated, it can be reused for retrieval
of sequences in the future to save time. Pysam, pyfaidx and
seqkit generate compatible index files with samtools, while
pyfasta, biopython and bioperl generate self-defined index files
that are different from samtools. According to the sequence
location in the index file, these tools are capable of quickly
seeking a sequence start position and reading a given number
of bytes. Except for biopython and bioperl, the other tools need
to keep index into memory when building index and retrieving
sequences, which severely limits the capability of parsing large
FASTA/Q files containing hundreds of millions of sequences. To
date, only samtools, biopython and bioperl have the capacity to
randomly access reads from FASTQ files. However, these tools do
not provide support for randomly accessing sequences from gzip
compressed files. Although samtools enables random access to a
bgzip compressed file, gzip is still the most popular compression
tool employed by public databases such as NCBI, Ensembl and
UCSC genome browser.

Here, we present pyfastx, a robust and versatile tool with high
time- and memory-efficient random access to sequences from
both plain and gzipped FASTA/Q files containing large sequence
records. Pyfastx is also a fast parser for sequential iterating over
sequence records from FASTA/Q files. We developed pyfastx as a

Figure 1. The overview of pyfastx workflow.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://github.com/fhcrc/seqmagick
https://github.com/fhcrc/seqmagick
https://github.com/jimhester/fasta_utilities
https://github.com/jimhester/fasta_utilities
https://github.com/lh3/seqtk
http://hannonlab.cshl.edu/fastx_toolkit
http://hannonlab.cshl.edu/fastx_toolkit
https://github.com/brentp/pyfasta
https://github.com/brentp/pyfasta


Pyfastx: a robust Python package for fast random access to sequences from plain and gzipped FASTA/Q files 3

Figure 2. Pyfastx structure, features and functions.

user-friendly Python package due to the increasing popularity of
Python as an ideal language for developing bioinformatics appli-
cations [12]. Additionally, pyfastx is designed to have excellent
compatibility and allows parsing of non-standard FASTA files
with different line lengths in an individual sequence. Pyfastx
also supplies command-line tools for users to extract subse-
quences, split FASTA/Q files and randomly sample sequences.

Materials and methods
Index design

An index file containing the start offset of each sequence should
be built to enable random access to a sequence. Thus, the desired
sequence can be quickly found by seeking the predefined offset.
The FASTA and FASTQ index files generated by pyfastx contain

nine and six columns, respectively, and these columns in both
files are distinctly different from columns in index files created
by other tools (Supplementary Figure S1). In general, the line
length of a sequence should also be included in the index file to
facilitate the calculation of the start offset of the subsequence.
The biopython index file does not include line length informa-
tion and therefore has no capability to retrieve the subsequence
in a memory efficient way. Whereas the index file of pyfastx
holds more information, making it more compatible to deal with
non-standard FASTA formatted files and more flexible when
extracting sequences and description information.

Implementation

Pyfastx was implemented in C language and developed as a
Python package depending on the zlib library (https://www.zli

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://www.zlib.net


4 Du et al.

b.net) and SQLite3 database (https://www.sqlite.org/index.html).
The workflow of pyfastx is shown in Figure 1. Pyfastx adopted
kseq.h extracted from the prevalent klib library (https://github.
com/attractivechaos/klib) to build positional index. The index
of each sequence was stored in an SQLite database file with
.fxi extension rather than a flat text file to avoid loading index
into memory when the sequence file is repeatedly opened. To
accelerate access to sequence or read information stored in the
database file, a unique search index was created on sequence or
read name column that might substantially increase the index
file size. If the FASTA/Q files are gzip compressed, pyfastx will
utilize the zran.c module from the indexed_gzip project (https://
github.com/pauldmccarthy/indexed_gzip) to build an index of
seek points, allowing random reading of sequences in a gzip
compressed file.

Benchmark

We evaluated the performance of pyfastx for index building,
random access and sequence iteration by monitoring the
running time and memory usage. We used pyfastx v0.7.0,
biopython v1.74, bioperl v1.7.7, samtools v1.9, pysam v0.15.3,
pyfasta v0.5.2, pyfaidx v0.5.8 and seqkit v0.13.2 for performance
comparison. We downloaded 15 genome FASTA files from the
NCBI assembly repository with total bases varying from 12 MB
to 32 GB and sequence counts ranging from 6 to 5,449,423
(Supplementary Table S1). We also downloaded 5 FASTQ files
from the NGDC database [13] with file size ranging from 3.6
to 95.52 GB and read counts ranging from 15.82 million to
392.21 million (Supplementary Table S2). Benchmark tests were
performed on a Centos server with Intel(R) Xeon(R) CPU E5–2620
v4 @ 2.10GHz, 64GB RAM and Python 3.6.6. More detailed infor-
mation about the server is listed in Supplementary Table S3.
The running time and peak memory usage for each tool were
measured by using linux built-in ‘time’ command located under/
usr/bin folder with -f ‘%e %M’ option. Each test was executed
three times, and the average elapsed time and peak memory
were calculated as the final benchmarking result. In addition,
we used all tools to build the index for the UniParc database, a
large FASTA file downloaded from UniProt (https://www.unipro
t.org/downloads) with a size of 106 GB, containing more than
305 million sequences. All the scripts used for performing the
benchmark are freely available at https://github.com/lmdu/pyfa
stx/tree/master/benchmark.

Results and discussion
Structure and features

Pyfastx has five objects that were implemented in pure C lan-
guage, these being Fasta, Fastq, Sequence, Read and Identifier.
The functions of these objects are depicted in Figure 2. The
Fasta and Fastq objects are the main components responsible
for building index and random access to sequences from plain or
gzipped FASTA/Q files. These two objects behave like Python list
and dict, allowing users to obtain a Sequence and Read object by
index or name. The Sequence object behaves like a Python string
that can be sliced to obtain subsequences and holds substan-
tial useful information such as name, description, GC content,
nucleotide sequence and reverse complement sequence. The
Read object allows users to obtain read sequences and quality
scores. Both Sequence and Read objects allow users to extract
the raw string of a sequence as it appears in the FASTA/Q file.
The Identifier object facilitates users to filter and sort sequences Ta

b
le

1.
C

om
p

ar
is

on
of

p
yf

as
tx

w
it

h
ot

h
er

to
ol

s
in

th
e

as
p

ec
t

of
fe

at
u

re
s

an
d

fu
n

ct
io

n
s

To
ol

s
La

n
gu

ag
e

U
R

L
R

an
d

om
ac

ce
ss

Fo
rm

at
su

p
p

or
t

C
om

m
an

d
li

n
e

to
ol

s

FA
ST

A
FA

ST
Q

G
zi

p
Fi

le
sp

li
t

Se
q

u
en

ce
ex

tr
ac

t
Se

q
u

en
ce

sa
m

p
le

FA
ST

Q
to

FA
ST

A

p
yf

as
ta

Py
th

on
h

tt
p

s:
//

gi
th

u
b.

co
m

/b
re

n
tp

/p
yf

as
ta

Y
es

Y
es

N
o

N
o

Y
es

Y
es

N
o

N
o

p
yf

ai
d

x
Py

th
on

h
tt

p
s:

//
gi

th
u

b.
co

m
/m

d
sh

w
5/

p
yf

ai
d

x
Y

es
Y

es
N

o
N

o
Y

es
Y

es
Y

es
N

o
p

ys
am

Py
th

on
,C

h
tt

p
s:

//
gi

th
u

b.
co

m
/p

ys
am

-d
ev

el
op

er
s/

p
ys

am
Y

es
Y

es
Y

es
a

N
o

N
o

N
o

N
o

N
o

bi
op

yt
h

on
Py

th
on

h
tt

p
s:

//
bi

op
yt

h
on

.o
rg

/
Y

es
Y

es
Y

es
N

o
N

o
N

o
N

o
N

o
p

yf
as

tx
Py

th
on

,C
h

tt
p

s:
//

gi
th

u
b.

co
m

/l
m

d
u

/p
yf

as
tx

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

sa
m

to
ol

s
C

h
tt

p
:/

/w
w

w
.h

ts
li

b.
or

g/
Y

es
Y

es
Y

es
N

o
N

o
Y

es
N

o
N

o
se

q
ki

t
G

O
h

tt
p

s:
//

bi
oi

n
f.

sh
en

w
ei

.m
e/

se
q

ki
t/

Y
es

Y
es

Y
es

a
Y

es
b

Y
es

Y
es

Y
es

Y
es

H
T

Se
q

Py
th

on
h

tt
p

s:
//

gi
th

u
b.

co
m

/s
im

on
-a

n
d

er
s/

h
ts

eq
N

o
Y

es
Y

es
N

o
N

o
N

o
N

o
N

o
se

q
m

ag
ic

k
Py

th
on

h
tt

p
s:

//
fh

cr
c.

gi
th

u
b.

io
/s

eq
m

ag
ic

k/
N

o
Y

es
Y

es
N

o
N

o
N

o
N

o
Y

es
fa

st
a_

u
ti

li
ti

es
Pe

rl
h

tt
p

s:
//

gi
th

u
b.

co
m

/j
im

h
es

te
r/

fa
st

a_
u

ti
li

ti
es

N
o

Y
es

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

FA
ST

X
-T

oo
lk

it
Pe

rl
h

tt
p

:/
/h

an
n

on
la

b.
cs

h
l.e

d
u

/f
as

tx
_t

oo
lk

it
/

N
o

Y
es

Y
es

N
o

Y
es

N
o

N
o

Y
es

se
q

tk
C

h
tt

p
s:

//
gi

th
u

b.
co

m
/l

h
3/

se
q

tk
N

o
Y

es
Y

es
Y

es
b

N
o

Y
es

Y
es

Y
es

fq
to

ol
C

h
tt

p
s:

//
gi

th
u

b.
co

m
/a

la
st

ai
r-

d
ro

op
/f

q
to

ol
s

N
o

N
o

Y
es

Y
es

b
N

o
Y

es
N

o
Y

es
B

io
p

er
l

Pe
rl

h
tt

p
s:

//
bi

op
er

l.o
rg

/
Y

es
Y

es
Y

es
N

o
N

o
N

o
N

o
N

o

a
T

h
e

to
ol

ca
n

p
ar

se
th

e
FA

ST
Q

fi
le

,b
u

t
d

oe
s

n
ot

al
lo

w
ra

n
d

om
ac

ce
ss

to
re

ad
s.

b
T

h
e

to
ol

ca
n

re
ad

se
q

u
en

ce
s

in
th

e
gz

ip
co

m
p

re
ss

ed
fi

le
fr

om
st

ar
t

to
en

d
,b

u
t

d
oe

s
n

ot
al

lo
w

ra
n

d
om

ac
ce

ss
to

se
q

u
en

ce
s

fr
om

th
e

gz
ip

co
m

p
re

ss
ed

fi
le

.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://www.zlib.net
https://www.sqlite.org/index.html
https://github.com/attractivechaos/klib
https://github.com/attractivechaos/klib
https://github.com/pauldmccarthy/indexed_gzip
https://github.com/pauldmccarthy/indexed_gzip
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://www.uniprot.org/downloads
https://www.uniprot.org/downloads
https://github.com/lmdu/pyfastx/tree/master/benchmark
https://github.com/lmdu/pyfastx/tree/master/benchmark
https://github.com/brentp/pyfasta
https://github.com/mdshw5/pyfaidx
https://github.com/pysam-developers/pysam
https://biopython.org/
https://github.com/lmdu/pyfastx
http://www.htslib.org/
https://bioinf.shenwei.me/seqkit/
https://github.com/simon-anders/htseq
https://fhcrc.github.io/seqmagick/
https://github.com/jimhester/fasta_utilities
http://hannonlab.cshl.edu/fastx_toolkit/
https://github.com/lh3/seqtk
https://github.com/alastair-droop/fqtools
https://bioperl.org/


Pyfastx: a robust Python package for fast random access to sequences from plain and gzipped FASTA/Q files 5

Figure 3. Performance comparison of index building. (A) The elapsed time and peak memory of each tool for building FASTA index. (B) The genome size and sequence

count of tested FASTA files. (C) The size of FASTA index files for each tool. (D) The elapsed time and peak memory of each tool for building FASTQ index. The missing

dots indicate that its elapsed time > 3500 seconds. (E) The file size and read count of tested FASTQ files. (F) The size of FASTQ index files for each tool.

in the FASTA file by name and length. Additionally, command-
line tools released with pyfastx assist users to split FASTA/Q files,
sample sequences from FASTA/Q files, extract subsequences and
convert FASTQ to FASTA format.

We have compared the features of pyfastx to other tools.
The results indicated that pyfastx is sufficiently advantageous to
replace existing tools when dealing with sequence files (Table 1).
Pyfastx provides support for random access to sequences from
both FASTA and FASTQ formats. Despite pysam and seqkit being
able to read sequences from gzip compressed FASTA/Q files, they
have no capability of building index for random access. As shown
in Table 1, pyfastx is the only tool that supports random access
to sequences from gzip compressed files. Moreover, it offers
commonly used command-line tools for users to manipulate
plain and gzipped FASTA/Q files.

Index building assessment

Figure 3 and Supplementary Table S4 illustrate the performance
of tested tools in terms of peak memory, elapsed time and index
file size for all datasets. Although all the tested tools exhibited
similar performance for small genomes, noticeable differences
have been observed between tested tools for large genomes

(Figure 3A and B). Pyfastx performed extremely well for time
and memory usage, and was even slightly faster than pysam
and samtools. Bioperl and biopython consumed the most time,
whereas pyfaidx, pyfasta and seqkit consumed the most amount
of memory. Pyfastx and biopython employed SQLite3 to store
index while bioperl used Berkeley DB. The generated index was
directly written into the database file instead of retaining it in
memory, which vastly reduced memory consumption. Despite
more time and memory consumed to build the index for the
gzip compressed version of genomes, pyfastx was still faster
than bioperl and biopython. Similarly, the sizes of generated
index files were also remarkably different when these tools were
used to process large genomes (Figure 3B and C). The sizes of
index files generated by pyfastx were larger than samtools, but
smaller than bioperl and seqkit, whereas, the sizes of index files
generated by pyfastx for compressed genomes were much larger
than those for the uncompressed ones (Figure 3C). The index file
size was closely related to the number of records and length of
name in the sequence file, and for the compressed file, it was
also related to file size due to the requirement of storing a seek
point index. Nevertheless, the disk space usage of the pyfastx
index file is still acceptable to all modern desktop computers (e.g.
maximum size ∼1 GB).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data


6 Du et al.

Figure 4. Performance comparison of random access. (A) The elapsed time and peak memory of each tool for random access to 30% of sequences from FASTA files. The

missing dots indicate that its elapsed time > 1000 seconds. (B) The elapsed time and peak memory of each tool for random access to 1000 subsequences with length

of 1 Kb from FASTA files. The missing dots indicate that its elapsed time > 50 seconds. (C) The elapsed time and peak memory of each tool for random access to 10 000

reads from FASTQ files. The missing dots indicate that its elapsed time >500 seconds.

All tools were then employed to build index for the UniParc
database file to evaluate the capacity of processing the large
sequence file. Pyfastx only used <3 GB memory to successfully
build the index, while it took three times longer for the com-
pressed version (Supplementary Table S5). Pyfaidx, pyfasta and
seqkit consumed almost all of the memory and were manually
terminated after running for >10 hours, even though samtools
consumed more than 30 GB of memory. Although bioperl and
biopython were also memory efficient, pyfastx was more than
3 times faster than biopython and 14 times faster than bioperl.
The index file size of pyfastx was larger than biopython and
samtools, but smaller than bioperl.

Currently, only pyfastx, biopython, bioperl and samtools
support random access to reads from FASTQ files. Figure 3D
demonstrates the performance of building the index. Bioperl
was not completely included in the figure since it consumed
more than 32 hours to build the index for the largest FASTQ
file (Supplementary Table S6). Pyfastx was slightly slower than
samtools, but samtools consumed too much memory with a
maximum of 46 GB. Although biopython was memory efficient, it
took twice as long as pyfastx and was slower than pyfastx when
processing compressed files. Unfortunately, the sizes of index
files generated by pyfastx were much larger than samtools with
a maximum ratio of 47.68% of the original file (Figure 3E and F).
Additionally, the index file size of the compressed file can be
larger than the size of the original file (Supplementary Table S6).
However, it is worthwhile to sacrifice storage space to reduce
memory usage when considering pyfastx’s suitability for use on
desktop computers and servers.

Random access evaluation

After building the index, all tools were applied to randomly
extract 30% of sequences from all genomes to evaluate the
performance of random access. As illustrated in Figure 4A and
Supplementary Table S7, pyfastx and other tools gave nearly the
same performance for processing smaller genomes. For larger

genomes, pyfastx was comparable with samtools but had a
higher performance than the other tools. However, for some gzip
compressed large genomes, pyfastx consumed much more time
than processing a plain format file. Due to the default use of two
threads, seqkit was even faster than samtools, but it consumed
much more memory (Supplementary Table S7). We also assessed
the performance of retrieval of subsequences by using these
tools to randomly extract 1000 subsequences of length 1 Kb from
all genomes. As shown in Figure 4B and Supplementary Table S8,
pyfastx performed excellently with extremely low time and
memory consumption. Unexpectedly, bioperl was comparable
with pyfastx while biopython consumed more time to process
some genomes. Biopython cannot directly extract subsequences
due to index design defect, where it has to acquire the whole
specified sequence and then slice the subsequence. We also
assessed the performance of retrieval of reads from FASTQ files
between pyfastx, bioperl, biopython and samtools. These tools
were used to randomly extract 10 000 reads from FASTQ files.
The time and memory usage of samtools increased considerably
with the size of FASTQ files, reaching a maximum memory usage
of 47 GB for the largest FASTQ file (Supplementary Table S9).
Pyfastx, bioperl and biopython were time- and memory effi-
cient (Figure 4C). Although bioperl and biopython were slightly
faster than pyfastx, pyfastx still had better performance when
considering the time consumption of index building.

Sequence iteration measurement

In practice, iterating over sequence records from FASTA/Q files
is a very important function for processing genomic data and
has a wide range of applications. We compared the sequence
iteration performance of pyfastx to other Python packages
and bioperl. Pyfastx provides two traversal modes, one is
with index that allows the users to access more sequence
information, the other is without index and provides only the
name and sequence, and quality for the FASTQ file. As shown
in Figure 5A and Supplementary Table S10, the performance

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data


Pyfastx: a robust Python package for fast random access to sequences from plain and gzipped FASTA/Q files 7

Figure 5. Performance comparison of sequence iteration. (A) The elapsed time and peak memory of each tool for iterating over sequences from FASTA files. The missing

dots indicate that its elapsed time > 500 seconds. (B) The elapsed time and peak memory of each tool for iterating over reads from FASTQ files. Biopython1: iterating

over reads by using SeqIO; biopython2: iterating over reads by using FastqGeneralIterator; pyfastx1: iterating over reads from plain FASTQ file with index; pyfastx2:

iterating over reads from plain FASTQ file without index; pyfastx3: iterating over reads from gzip compressed FASTQ file with index; pyfastx4: iterating over reads from

gzip compressed FASTQ file without index. The missing dots indicate that its elapsed time > 2500 seconds.

of these two modes were comparable and higher than the
performance of the other Python packages. Although pyfastx
consumed more time to traverse the gzip compressed FASTA
file, it was still much faster than bioperl and comparable
with biopython in processing plain FASTA files. As depicted in
Figure 5B and Supplementary Table S11, it was clear that pyfastx
consumed more memory to process gzip compressed FASTQ
files, while its speed was faster than other tools. Biopython
also provides two ways to iterate over reads from a FASTQ file,
one is FastqGeneralIterator, and the other is SeqIO. Although
FastqGeneralIterator was much faster than SeqIO, it was still
slower than pyfastx. It is worth noting that the consumption
times of pyfastx for processing plain and gzip compressed FASTQ
files were very similar.

Conclusion
In this study, we have presented pyfastx, which is a time
and memory efficient Python package for randomly accessing
sequences from FASTA/Q files. Compared to existing tools,

pyfastx exhibited the best performance for index building,
sequence retrieval and sequence iterating. Pyfastx also has
the capability to build index for large FASTA/Q files con-
taining hundreds of millions of sequences with low memory
consumption. To our knowledge, pyfastx is the first tool
that provides support for randomly accessing sequences
from gzip compressed FASTA/Q files. Although pyfastx was
developed as a Python package, it also offers command-line
tools for users to handle common manipulations of FASTA/Q
files. We anticipate that pyfastx may greatly increase the
efficiency of newly developed bioinformatics tools for sequence
analysis.

Data Availability
The FASTA files and FASTQ files underlying this study were
downloaded from NCBI assembly repository and NGDC database.
The accession number of each dataset can be found in Supple-
mentary Table S1 and S2. The source code of pyfastx is deposited
in a Github repository (https://github.com/lmdu/pyfastx).

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data


8 Du et al.

Key Points
• Pyfastx is the first tool that supports random access to

sequences from gzip compressed FASTA/Q files.
• Pyfastx has the highest performance for building

index and extracting sequences.
• Pyfastx has the capability to process extremely large

FASTA/Q files containing thousands of millions of
sequences with extremely low memory consumption.

• Pyfastx is a Python package and can be easily
integrated into biological applications, database or
genome browsers to extract subsequences.

• Pyfastx provides common command-line tools for
users to manipulate FASTA/Q files.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.

Acknowledgements

We would like to greatly appreciate Heng Li for develop-
ing kseq and Paul McCarthy for developing indexed_gzip.
We would also like to thank pyfastx community users for
providing feature requests and reporting bugs.

Funding

The Sichuan Science and Technology Program (2020YJ0490)
and Sichuan Association for Science and Technology
(2018RCTJ).

References
1. Kucherov G. Evolution of biosequence search algorithms: a

brief survey. Bioinformatics 2019;35(19):3547–52.
2. Zhang H. Overview of sequence data formats. Methods Mol

Biol 2016;1418:3–17.
3. Pearson WR, Lipman DJ. Improved tools for biological

sequence comparison. Proc Natl Acad Sci U S A 1988;85:
2444–8.

4. Cock PJ, Fields CJ, Goto N, et al. The sanger FASTQ file format
for sequences with quality scores, and the Solexa/Illumina
FASTQ variants. Nucleic Acids Res 2010;38(6):1767–71.

5. Anders S, Pyl PT, Huber W. HTSeq–a python framework to
work with high-throughput sequencing data. Bioinformatics
2015;31(2):166–9.

6. Droop AP. Fqtools: an efficient software suite for modern
FASTQ file manipulation. Bioinformatics 2016;32(12):1883–4.

7. Cock PJ, Antao T, Chang JT, et al. Biopython: freely avail-
able python tools for computational molecular biology and
bioinformatics. Bioinformatics 2009;25(11):1422–3.

8. Stajich JE, Block D, Boulez K, et al. The Bioperl toolkit: Perl
modules for the life sciences. Genome Res 2002;12(10):1611–8.

9. Li H, Handsaker B, Wysoker A, et al. The sequence
alignment/map format and SAMtools. Bioinformatics
2009;25(16):2078–9.

10. Shen W, Le S, Li Y, et al. SeqKit: a cross-platform and
ultrafast toolkit for FASTA/Q file manipulation. PLoS One
2016;11(10):e0163962.

11. Shirley MD, Ma Z, Pedersen BS, et al. Efficient "pythonic"
access to FASTA files using pyfaidx. Peer J Prepr 2015;3:
e970v1.

12. Ekmekci B, McAnany CE, Mura C. An introduction to pro-
gramming for bioscientists: a python-based primer. PLoS
Comput Biol 2016;12(6):e1004867.

13. National Genomics Data Center Members and Partners.
Database resources of the National Genomics Data Center
in 2020. Nucleic Acids Res 2020;48(D1):D24–33.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbaa368/6042388 by U

niversity of W
estern O

ntario user on 21 D
ecem

ber 2020

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa368#supplementary-data

	Pyfastx: a robust Python package for fast random access to sequences from plain and gzipped FASTA/Q files
	Introduction
	Materials and methods
	Index design
	Implementation
	Benchmark

	Results and discussion
	Structure and features
	Index building assessment
	Random access evaluation
	Sequence iteration measurement

	Conclusion
	Data Availability
	Key Points

	Supplementary Data
	Funding


